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We argue that the impedance spectroscopy of an electrolytic cell in the low-frequency range can give
information on the ambipolar diffusion. Our analysis is based on a theoretical investigation of the real part of
the electrical impedance of an electrolytic cell. When the mobility of the positive ions differs from that of the
negative ions, a second plateau of the resistance of the cell, in series representation, is expected close to the dc
limit of the applied voltage. The effective diffusion coefficient, related to the measured resistance of the cell,
in the dc limit, coincides with the ambipolar diffusion coefficient. The associated relaxation time corresponds
to the ambipolar diffusion, and it is proportional to the square of the thickness of the sample. In the high-
frequency range, the relaxation time coincides with the Debye relaxation time, connected to the free diffusion
coefficient, and it is independent of the thickness of the sample. Finally, we propose a method to calculate the
diffusion coefficients of the individual ions from the impedance spectrum and we discuss the implications of
ambipolar diffusion in impedance measurements and interpretation of experimental quantities.
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I. INTRODUCTION

The impedance spectroscopy technique is widely used to
characterize condensed matter from a dielectric point of view
�1�. According to this technique, a sample of the material
under investigation is submitted to an external voltage de-
pending on time in sinusoidal manner, �V�t ;��
=V0 exp�i�t�. The current I flowing in the circuit containing
the cell is measured by changing the circular frequency �
=2�f , of the applied voltage. For small enough amplitude of
the applied voltage V0, the behavior of the sample can be
considered linear and the generalized Ohm’s law valid �2,3�.
Knowing the applied voltage and the corresponding current,
it is possible to determine the electrical impedance Z
=�V / I. From the analysis of Z=Z���, or of its real and
imaginary parts R���, X���, it is possible to describe the
electrical behavior of the sample and to obtain information
on the molecular mechanisms responsible for the electrical
properties of the sample �4�.

In the present paper we are interested in the electrical
properties of a symmetric binary electrolyte, which, in a first
approximation, can be considered as a dispersion of ions in a
dielectric liquid. We consider a sample in the shape of a slab
and assume that the number density of ions, N, in thermody-
namic equilibrium �5� is N�N0, where N0 is the number
density of the atoms forming the liquid in which the ions are
dispersed. In this framework the collisions between the ions
may be neglected with respect to the collisions of the ions
with the neutral atoms. Therefore, the recombination effect
does not play any role in the diffusion process. Under these
conditions the diffusion of positive and negative ions is not
independent, because the charge separation resulting from
the diffusion gives rise to an electric field that opposes fur-
ther charge separation. This effect is called ambipolar diffu-
sion in plasma physics �6,7�.

Although the theory of neutral electrolytes is very well
developed, the influence of ambipolar diffusion on the im-
pedance of an electrolyte has not been considered so far. Our
aim is to show that the frequency dependence of the real part
of the electrical impedance can give information on the am-
bipolar and free diffusion coefficients of the ions, which are
different when the positive and negative ions have different
diffusivities. Consequently, from the impedance spectrum it
is possible to obtain the diffusion coefficients of the positive
and negative ions.

The paper is organized as follows. In Sec. II is presented
for orientation the derivation of the ambipolar diffusion co-
efficient. The analysis of the impedance spectroscopy of an
electrolytic cell is presented in Sec. III. There, the influence
of the difference between the diffusion coefficients of the
positive and negative ions on the frequency dependence of
the real part of the electrical impedance of the cell is dis-
cussed. In particular, we show that the equivalent electrical
resistance of the cell, in series representation, versus the fre-
quency of the applied difference of potential presents two
plateaus. The one in the low-frequency range is related to the
ambipolar diffusion, whereas the one in the high-frequency
range is connected to the free diffusion, where the effective
diffusion coefficient is the arithmetical average of the diffu-
sion coefficients of the two types of ions present in the elec-
trolyte. In Sec. IV we investigate the dependence of the re-
laxation frequencies on the diffusion coefficients of the
positive and negative ions. We show that the relaxation phe-
nomenon occurring in the low-frequency range is a pure dif-
fusive phenomenon, whose relaxation time depends on the
square of the thickness of the sample. On the contrary the
relaxation phenomenon at higher frequency is a pure Debye
relaxation phenomenon, independent of the thickness of the
sample. Section V is devoted to the conclusions.

II. AMBIPOLAR DIFFUSION

Let us consider the motion of a charged particle, with
electrical charge q, in an isotropic dielectric liquid in the*Corresponding author.
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presence of an electric field E. The mobility � of the charged
particle is defined as the proportionality factor between the
mean velocity v along the local field E and the electric field
itself according to the relation v=�E. Then, the electric field
is responsible for a drift current density jdrift=nv=n�E,
where n is the bulk number density of particles subjected to
the action of E. In the case where the bulk density of par-
ticles is not homogeneous, according to Fick’s law, there is
also a diffusion current density jdiffusion=−D�n, where D is
the diffusion coefficient of the particles in the considered
medium. In an electrolytic solution, the total mass current
density of the ions is

jp = − Dp�np + �pnpE ,

jm = − Dm�nm − �mnmE , �1�

where np=np�r , t� and nm=nm�r , t� �p stands for plus, and m
stands for minus� are the local ionic number densities at r,
and Dp and Dm the diffusion coefficients of positive and
negative ions, respectively. The time evolution for np and nm
is obtained by solving �i� the equations of continuity for the
two types of ions,

�np

�t
= − � · jp = Dp� · ��np −

�p

Dp
npE� ,

�nm

�t
= − � · jm = Dm� · ��nm +

�m

Dm
nmE� , �2�

and �ii� the Poisson equation, relating the effective electric
field with the net excess charge density,

� · E = q
np − nm

�
, �3�

where � is the dielectric permittivity of the solvent. At equi-
librium the local ionic densities np�r� and nm�r� are given by
the Maxwell-Boltzmann statistics,

np�r� = Np exp�− qV�r�/kBT� ,

nm�r� = Nm exp�qV�r�/kBT� , �4�

where Np and Nm are normalization factors and V�r� is the
electrical potential. From Eqs. �2� and �4� one retrieves the
Einstein-Smoluchowski relation �p /Dp=�m /Dm=q /kBT �8�.

In thermodynamic equilibrium, in the absence of an ex-
ternal electric field, an electrolyte of infinite thickness is lo-
cally and globally electrically neutral. Let us consider now a
situation in which during the evolution of the ionic density
due to an external electric field or to adsorption phenomena
at the limiting surfaces, the electrolyte remains quasineutral;
i.e., the characteristic dimension of the system, d, is much
larger than the Debye screening length � �defined after the
Eqs. �12� below�. This is the case for a relatively high den-
sity of ions �small Debye length�. In this case, where ��d,
any separation of charges gives rise to a large electric field
that prevents further separation and preserves the quasineu-
trality of the electrolyte—i.e., np�nm—at scales larger than
�. This phenomenon is known as ambipolar diffusion �7�.
Since np�nm, the fluxes of the positive and negative ions are
the same, and hence jp= jm. From the latter condition and
Eqs. �1� we get that the resulting electric field is

E =
Dp�np − Dm�nm

�pnp + �mnm
. �5�

In the limit of quasineutrality we are considering, the current
density of the positive ions is given by

jp = −
�mnmDp�np + �pnpDm�nm

�pnp + �mnm
, �6�

obtained by substituting Eq. �5� in the first equation of Eqs.
�1�.

We put np=N+�np and nm=N+�nm, where �np and �nm
are variations of the bulk densities of the ions due to diffu-
sion. In the limit of small variations of the ionic bulk densi-
ties in the diffusion phenomenon—i.e., when �np /N�1 and
�nm /N�1—Eq. �6� yields

jp = −
�mDp�1 + ��nm/N�����np� + �pDm�1 + ��np/N�����nm�

�p�1 + 	p� + �m�1 + 	m�
, �7�

which, at first order in �np and �nm, leads to

jp = −
�mDp���np� + �pDm���nm�

�p + �m
. �8�

Taking into account the Einstein-Smoluchowski relation, Eq.
�8� can be cast in the final form

jp = −
DpDm

Dp + Dm
���np + �nm� . �9�

Since the electrolyte is assumed quasineutral, �np��nm, Eq.
�9� reads

jp = − Da���np� , �10�

where the quantity
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Da = 2
DpDm

Dp + Dm
�11�

is called the ambipolar diffusion coefficient �6�. From Eq.
�11� it follows that for Dp�Dm, Da=2Dm. Note that Eq. �6�
leads to equations analogous to Eqs. �8�–�10� for the total
concentrations, since �np=���np� and �nm=���nm� and
once electroneutrality is assumed.

In the case where Dp�Dm, the time evolution of the
negative ions is described by a diffusion equation where the
effective diffusion coefficient is Da=2Dm. To this end, let us
rewrite Eqs. �2�, taking into account Eq. �3�. At the first order
in �np and �nm, Eqs. �2� can be rewritten as

���np�
�t

= Dp��2��np� −
1

2�2 ��np − �nm�	 ,

���nm�
�t

= Dm��2��nm� +
1

2�2 ��np − �nm�	 , �12�

where �=
�kBT / �2Nq2� is the Debye length, evaluated in
thermodynamic equilibrium �9�. When an external field is
suddenly applied to the sample, �2��np���n /d2 and
�2��nm���n /d2, where �n is of the order of the maximum
variation induced by the field and d is a typical dimension of
the sample. Since we are considering the limit of ��d, Eqs.
�12� are well approximated by

���np�
�t

= −
Dp

2�2 ��np − �nm� ,

���nm�
�t

=
Dm

2�2 ��np − �nm� . �13�

From Eqs. �13� it follows that

�np�t� − �nm�t� = ��np�0� − �nm�0��exp�− t/
0� , �14�

where 
0=2�2 / �Dp+Dm��2�2 /Dp. From Eq. �14� we derive
that the local difference between �np and �nm decreases ex-
ponentially with the time constant 
0. After this initial redis-
tribution of ions, if Dp�Dm, the positive ions rapidly reach
the equilibrium state, in which ���np� /�t=0, and hence, from
the first equation of Eqs. �12�, �np−�nm=2�2�2��np�. By
substituting this result into the second equation of Eqs. �13�,
taking into account that �2��np���2��nm�, we get

���nm�
�t

= 2Dm�2��nm�; �15�

i.e., the effective diffusion coefficient for the slow redistri-
bution of the negative ions is the ambipolar diffusion coeffi-
cient.

III. ROLE OF THE AMBIPOLAR DIFFUSION ON THE
IMPEDANCE SPECTROSCOPY

The analysis of the electrical behavior of an electrolytic
cell subjected to an external field is usually performed, in the
continuum approximation, by solving the equations of conti-

nuity for the positive and negative ions and the equation of
Poisson for the actual electrical potential in the cell �10�. A
simple extension of the analysis presented in �10� allows one
to evaluate the impedance of an electrolytic cell when it is
submitted to a periodic external electrical potential of small
amplitude with respect to the thermal voltage �11�. The
analysis reported in �11� is valid when �i� the ions have the
same diffusivity �Dp=Dm=D�, �ii� the electrodes are per-
fectly blocking, �iii� the sample is in the shape of a slab of
thickness d, and �iv� the impurities are completely dissoci-
ated.

The analysis also takes account of the double layers close
to the electrodes due to the ions confinement induced by the
external electric field. In particular, the expressions used for
the evaluation of the real and imaginary parts of the electrical
impedance of the cell include the influence of the double
layers on the impedance spectra. The analysis presented in
�11� predicts that, in the limit �→0, �i� the equivalent resis-
tance of the cell tends to R�0�=�2d /�DS, where S is the
surface area of the electrodes, and its equivalent conductivity
tends to �eq�0�=�D /�2; �ii� the equivalent capacitance of the
cell tends to C�0�=�S / �2��, and its equivalent dielectric
constant tends to �eq=��d /2��; �iii� the electrical resistance
is practically independent of � up to �r=D /�2, correspond-
ing to the Debye relaxation time 
r=�2 /D.

In the limit �→� the equivalent resistance tends to zero
and the equivalent capacitance to ��S /d�. This limit is easily
understood because in the high-frequency regime the ions do
not give any contribution to the electrical properties of the
liquid in which they are dispersed.

Recently we have generalized the analysis of �11� in the
case that the diffusion coefficient of the positive ions differs
from the one of the negative ions �12�. We have solved the
fundamental equations of the problem in the presence of a
small amplitude voltage, �V�t ;��=V0 exp�i�t�, applied at a
sample in the shape of a slab in a Cartesian reference frame
with the z axis perpendicular to the limiting surfaces, placed
at z= ±d /2. The electrodes are assumed blocking, and the
potential at the electrodes is V�±d /2 , t�= ± �V0 /2�exp�i�t�.
As is shown in the Appendix, it is possible to evaluate the
electrical potential across the cell, V�z , t ;��, and the corre-
sponding electric field E�z , t ;��=−�V�z , t ;�� /�z. Further,
making use of Gauss’s law, the electrical charge density on
the electrodes, Q�t ;��, and hence the electrical current in the
external circuit, I�t ;��=dQ�t ;�� /dt, can be easily evalu-
ated. Finally, from the current and the applied voltage, the
real and imaginary parts of the impedance are determined,
Z���=�V�t ;�� / I�t ;��=R���+ iX���. For convenience of
the following analysis, we report the real part of Eq. �20�
from �12� adapted to the normalization introduced in the Ap-
pendix:

R��� = Re� 2�z = d/2�
i�S���z = d/2�	 . �16�

The function �z� is the amplitude of the potential normal-
ized by the thermal voltage Vth=kBT /q where q is the modu-
lus of the elementary electric charge—i.e.,
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V�z,t�
Vth

= �z�exp�i�t� . �17�

The analysis of the above expression for R���, presented in
�12�, shows that when Dp�Dm the frequency dependence of
R=R��� presents two well-defined plateaus �see Fig. 1�a��.
The problem admits an analytical solution, but the equations
are rather complicated. For this reason, a numerical investi-
gation of the formulas is rather attractive.

By expanding the full expressions for R��� and X��� re-
ported in �12�, in power series in � around �=0, we obtain
in the limit of ��d

R�� → 0� =
�2d

�DaS
�1 − �Dp − Dm

DpDm
�2 d2

480
�2	 ,

X�� → 0� = −
2�

�S�
�1 + �Dp − Dm

DpDm
�2�d3

96
�2	 , �18�

where Da is the ambipolar diffusion coefficient introduced in
Eq. �11�. It follows that for �→0 the resistance R��� and the
capacitance C���=−1/�X��� tend to R�0�=�2d /�DaS and
C�0�=�S /2�. Thus, the equivalent conductivity and dielec-
tric constant in this limit are �eq=Da� /�2 and �eq=�d /2�.
From the expression for �eq we conclude that in the low-
frequency range the conduction is connected with the ambi-
polar diffusion.

Increasing the frequency beyond the first relaxation fre-
quency defining the plateau in the low-frequency range, the
resistance decreases and then presents a new plateau, char-
acterized by R�=�2d /�DfS, where Df = �Dp+Dm� /2 is the
diffusion coefficient for the free diffusion phenomenon �13�.
The equivalent conductivity connected to R� is �eq� =Df� /�2;
i.e., in this frequency range, the diffusion of the ions is the
free diffusion.

In the limit of �→�, R��� and X��� can be expanded in
power series of 1 /� as

R�� → � � =
Dfd

��2S

1

�2 −
Dp

3/2 + Dm
3/2


2��2S

1

�5/2 ,

X�� → � � = −
d

�S�
+

Dp
3/2 + Dm

3/2


2��2S

1

�5/2 . �19�

From these equations it follows that in the high-frequency
range, the electrical resistance of the cell, in the series rep-
resentation, tends to zero and the equivalent dielectric con-
stant tends to �, as expected.

IV. RELAXATION FREQUENCIES �l AND �h

Using the analytical expression of R���, we investigate
the dependence of the relaxation frequencies defining the
two plateaus of R=R��� on the individual diffusion coeffi-
cients of the ions. Unfortunately, the explicit expression for
R=R��� cannot be solved for the relaxation frequencies �l

and �h defining the two plateaus. For this reason we show
first how the frequencies �l and �h can be evaluated from
R=R��� by use of numerical minimization. Further, we in-
vestigate the dependences of �l and �h on the ratio of the
ions diffusion coefficients y=Dm /Dp, the thickness of the
cell d, and the bulk number density of ions, N.

For the numerical calculations of R=R��� we assume that
the ions are monovalent, q=1.6�10−19 A s, with number
density N=4�1020 m−3 and Dp=8.2�10−11 m2/s, corre-
sponding to a commercial liquid crystal �14�. The geometri-
cal parameters of the cell are d=25 �m and S=2�10−4 m2,
typical for display technology.

As shown in Fig. 1�a�, for the case y=Dm /Dp=0.1, the
frequency dependence of R=R��� presents two well-defined
plateaus. Figure 1�b� shows the function G���=dR��� /d�
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FIG. 1. Plot of the frequency dependence of R=R��� for y
=Dm /Dp=0.1. Note the presence of two plateaus in the low- and
high-frequency regions �a�. G=dR /d� vs log10���, presenting two
peaks in correspondence of the two relaxation frequencies �b�. H
=d2R /d�2 vs log10���. The condition H���=0 determines the re-
laxation frequencies �c�.
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versus �. It has the typical frequency dependence of the
dissipation factor in dielectrics. The function G=G��� pre-
sents two well-defined minima, related to the relaxation phe-
nomena. In the low-frequency range, the minimum is con-
nected to the ambipolar diffusion, and in the high-frequency
range, it is related to the free diffusion, as discussed above.
To investigate the relaxation frequencies it is useful to ana-
lyze H���=dG /d�=d2R /d�2 versus �, since the zeros of
H��� define the relaxation frequencies �l and �h, as shown
in Fig. 1�c�.

To relate the relaxation frequencies in the low-, �l, and
high-, �h, frequency regions with the physical parameters of
the problem, we propose the following expressions:

�l = kl
Da

d2 , �h = kh
Df

�2 , �20�

derived by dimensional arguments. kl and kh are dimension-
less coefficients to be determined.

The expression for �l can be understood by means of
simple considerations. Using Eq. �10�, the equation of conti-
nuity for the positive ions reads

���np�
�t

= Da�2��np� , �21�

which has to be solved with the boundary condition jp ·k
=0, where k is the geometrical surface normal, outward di-
rected, of the surface limiting the sample. This boundary
condition is connected with the hypothesis that the ions can-
not leave the sample �blocking electrodes�. For a sample in
the shape of a slab, with the surfaces placed at z= ±d /2, Eq.
�21� with the relevant boundary conditions can be rewritten
as

���np�
�t

= Da
�2��np�

�z2 �22�

and

���np�
�z

= 0, at z = ± d/2, �23�

respectively. Simple calculations give

�np�z,t� = �
k
�Ak sin�k

�

d
z� + Bk cos�k

�

d
z�	e−k2t/
,

�24�

where 
=Da
−1�d /��2 is the longest relaxation time and 1/


the highest relaxation frequency. The quantity 1 /
 coincides
with �l when kl=�2.

In a similar manner, the expression for �h can be derived
from Eq. �14�, according to which the longest relaxation time
connected to the decrease of �np−�nm is 
0=�2 /Df. The
quantity 1 /
0 is the highest relaxation frequency and coin-
cides with �h.

We perform, first, a numerical evaluation of the constants
kh and kl by fitting the dependence of the relaxation frequen-
cies on y. We keep the same values of q, N, Dp, d, and S as
before, while varying Dm. Figure 2�a� shows the numerically
determined �solid points� relaxation frequency �l=log10��l�

vs �l=log10�y / �1+y��, whereas Fig. 2�b� shows �h
=log10��h� vs �h=log10�1+y�, where y=Dm /Dp varies in the
range 10−4�y�1. Fitting the numerical values of �l and �h
with the scaling expressions �20�, we get kl=�2�1.000 03
and kh=0.998. These values are essentially the theoretical
ones. The agreement between the numerical values and the
scaling expressions proposed above �solid lines in Fig. 2� is
good over the investigated range.

The latter results reveal two distinct relaxation phenom-
ena related to �i� the ambipolar diffusion and �ii� the free
diffusion. In the low-frequency range the relaxation time de-
pends on the square of the thickness of the slab and on the
ambipolar diffusion coefficient Da. This is a pure diffusive
phenomenon. At higher frequencies, a second relaxation phe-
nomenon appears, which originates from the free diffusion of
the ions over the Debye length with a diffusion coefficient Df
�15�. In the high-frequency range the relaxation time is inde-
pendent of the thickness of the sample, as in a simple Debye
relaxation phenomenon. As reported in �11�, when Dp=Dm
=D the relaxation frequency is �r=D /�2, whereas when
Dp�Dm the higher relaxation frequency is given by �h
=Df /�2. Therefore, the relaxation frequency in the high-
frequency range depends only on Df = �Dp+Dm� /2 and on the
Debye length �. From the discussion reported above it fol-
lows that the numerical values of the electrical resistance of
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FIG. 2. �l=log10��l� vs �l=log10� y
1+y

� plot. �l is the lower re-
laxation frequency. The numerical results �points� show that �l

��l, indicating that �l is related to the diffusion time for the ambi-
polar diffusion �a�. �h=log10��h� vs �h=log10�1+y� plot. �h is the
higher relaxation frequency. The numerical results �points� show
that �h��h, suggesting that �h is related to Debye’s relaxation
times for free diffusion.
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the two plateaus are related to the diffusion coefficients of
the ambipolar and free diffusion phenomena. From them it is
possible to determine Da and Df, and then the individual
ionic diffusion coefficients Dp and Dm, by the relations

Dp,m = Df ± 
Df�Df − Da� . �25�

Therefore, from a measurement of R��� for an electrolytic
cell of known geometry, one may obtain the individual dif-
fusion coefficients of the ions and their number density.

In Fig. 3 we show the plot of �a� �h and �b� �l vs log10 N
while the thickness of the cell is kept constant �d=25 �m�.
Solid points are the numerical values calculated from the
inflection points of R���, and solid lines are given from the
scaling relations �20�. In Fig. 3�a�, the slope of the solid line
is unity, as can be deduced from the first equation of Eqs.
�20� while �h does not show any dependence on N. Devia-
tion from the scaling laws is observed in the range of N
values below 1018 m−3 because in this range the Debye
length starts to compare with the thickness of the cell and
therefore the condition ��d is no longer fulfilled. For in-
stance, while d is 25 �m the Debye length becomes �
=6.8 �m for N=1017 m−3.

Finally, Fig. 4 gives the plot of �a� �h and �b� �l vs
log10 d while the ionic number density N is kept constant
�N=4�1020 m−3 corresponding to �=0.11 �m�. The solid
lines represent the scaling relations �20� while the solid

points result from numerical calculations. The dependence of
�l=log10��l� on the thickness of the cell d gives a line of
slope equal to negative two in Fig. 4�b�, while �h
=log10��h� is independent of d. Deviations from the scaling
laws are observed when � begins to compare to the cell
thickness.

We conclude this section with the practical importance of
the analysis presented above. The physical parameters char-
acterizing a symmetric binary electrolyte, completely disso-
ciated, are the diffusion coefficients of the two types of ions
�Dp and Dm� and the bulk density of ions �N�, which defines
�. These quantities can be determined from the impedance
spectrum of the electrolytic cell in the shape of a slab of
thickness d and surface area S. In fact, from the impedance
spectrum, in the region �→0, using the relation X��→0�
=−2� /�S�, one obtains �. After that, from the relation
R�0�=�2d /�DaS, the ambipolar diffusion coefficient is
evaluated. Finally, by means of the expression R�
=�2d /�DfS, the parameter Df is deduced. When �, Da, and
Df have been determined, it is possible to evaluate �l
= �� /d�2Da and �h=Df /�2 and to compare with the experi-
mental values of these quantities to have a test of the mea-
sured parameters. However, R�0� is not always easy to be
measured since it requires low-frequency measurements.
When R�0� is not known with large accuracy, it is possible to
determine � as described above from X��→0�=−2� /�S�,
and then the diffusion coefficients from �l and �h, if the
experimental resolution is good enough. In this case the test
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FIG. 3. �h=log10��h� vs log10�N� �a� and �l=log10��l� vs
log10�N� �b� for d=25 �m. Solid points are obtained from numeri-
cal calculations, and solid lines are calculated from the scaling re-
lations �20�. The Debye length becomes �=6.8 �m for N
=1017 m−3.
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are computed numerically.
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is represented by R�0� and R�. Combining both methods
seems the best way to obtain Dp, Dm, and N.

V. CONCLUSIONS

We have investigated the frequency dependence of the
real part of the electrical impedance of an electrolytic cell,
assuming that the diffusion coefficient of the positive ions is
different from that of the negative ions. Our analysis has
been performed for a cell in the shape of a slab limited by
perfectly blocking electrodes. According to our calculations,
the plateau in the low-frequency range of the real part of the
impedance, R���, is connected with the ambipolar diffusion,
where the electrolyte is close to the quasineutral state. At
higher frequency, R��� presents a second plateau due to the
free diffusion of the ions in the presence of the electric field.
The associated effective diffusion coefficient is the average
between the diffusion coefficients of the two type of ions.
Consequently, by the impedance spectrum of a symmetric
binary electrolyte it is possible to determine the diffusion
coefficients of the positive and negative ions. By analyzing
the relaxation phenomena occurring in the system, we derive
that the relaxation taking place at the low-frequency region is
connected with the diffusion of the ions in the solution, with
a diffusion coefficient equal to Da. The frequency relaxation
in the high-frequency region is connected with the Debye
relaxation time for ions having a diffusion coefficient equal
to Df.

The strong variation of R=R��� between the two plateaus
has been observed experimentally, and it is usually attributed
to electrode polarization effects �16,17�. In general, circuit
models neglect diffusion effects and the only characteristic
times that appear are of the type RC charging time. There-
fore, in order to account for diffusion effects, elements such
as the Warburg element have been introduced �13�. Based on
our impedance spectroscopy analysis, when individual ions
have different diffusion coefficients, we argue that ambipolar
diffusion should be taken into account when analyzing ex-
perimental data. Ambipolar diffusion could be simply the
origin of the R=R��� increase or it could interfere with elec-
trode polarization effects, ion adsorption, etc. The latter issue
deserves further theoretical analysis.

It is beyond the scope of the present paper, but worth
pursuing, to investigate ambipolar diffusion when the applied
voltage begins to enter the nonlinear regime where �i� mul-
tiple time scales are introduced and �ii� the thin double-layer
approximation may become questionable.
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APPENDIX: IMPEDANCE CALCULATION

In the following the deduction of the electrical impedance
of the cell is briefly recalled �12�. The fundamental equations
of the problem are Eqs. �2� and �3�.

In the case of a small external electric field, when �np�N
and �nm�N, Eqs. �12� can be linearized for our one-
dimensional problem and they read

���np�
�t

= Dp� �2��np�
�z2 −

1

2�2 ��np − �nm�	 ,

���nm�
�t

= Dm� �2��nm�
�z2 +

1

2�2 ��np − �nm�	 , �A1�

while the equation of Poisson is

�2V

�z2 = −
q

�
��np − �nm� . �A2�

The boundary conditions are jp= jm=0 at z= ±d /2, con-
nected with the hypothesis that the electrodes are blocking,
and V�±d /2 , t�= ± �V0 /2�exp�i�t� due to the presence of the
external power supply. The boundary conditions on the den-
sity of currents, taking into account Eq. �1�, can be rewritten
as

���np�
�z

+
qN

kBT

�V

�z
= 0,

���nm�
�z

−
qN

kBT

�V

�z
= 0. �A3�

It is useful to introduce the reduced quantities p=�np /N, m
=�nm /N, and u=V /Vth, representing the relative variations
of the ionic densities due to the external field and the elec-
trical potential expressed in units of the thermal potential
Vth=kBT /q. With these quantities Eqs. �A1� and �A2� and the
boundary conditions �A3� and that on the potential read

�p

�t
= Dp� �2p

�z2 −
1

2�2 �p − m�	 ,

�m

�t
= Dm� �2m

�z2 +
1

2�2 �p − m�	 ,

�2u

�z2 = −
1

2�2 �p − m� �A4�

and

�p

�z
+

�u

�z
= 0,

�m

�z
−

�u

�z
= 0,

u�±d/2,t� = ± �u0/2�exp�i�t� , �A5�

where u0=V0 /Vth. Since the system of differential equations
�A4� has constant coefficients, the solutions are of the type

p�z,t� = Rp�z�exp�i�t�, m�z,t� = Rm�z�exp�i�t� ,
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u�z,t� = �z�exp�i�t� . �A6�

By substituting the above trial solutions into Eqs. �A4� and
�A5� we obtain

Rp��z� −
1

�p
2 Rp�z� +

1

2�2Rm�z� = 0,

Rm� �z� −
1

�m
2 Rm�z� +

1

2�2Rp�z� = 0,

��z� = −
1

2�2 �Rp�z� − Rm�z�� �A7�

and

Rp� + � = 0,

Rm� − � = 0,

�±d/2� = ± u0, �A8�

where the prime means derivation with respect to z and

1

�p
2 =

1

2�2�1 + 2i�
�2

Dp
� ,

1

�m
2 =

1

2�2�1 + 2i�
�2

Dm
� . �A9�

The functions Rp�z�, Rm�z�, and �z�, solutions of Eqs. �A7�
with the boundary conditions �A8� are

Rp�z� = C1 sinh��1z� + C2 sinh��2z� ,

Rm�z� = k1C1 sinh��1z� + k2C2 sinh��2z� ,

�z� = −
1

2�2�1 − k1

�1
2 C1 sinh��1z� +

1 − k2

�2
2 C2 sinh��2z�	

+ Az , �A10�

where

�1,2 =
1

2�2�1 + i��2Dp + Dm

DpDm
±
1 + �i��2Dm − Dp

DmDp
�2	 ,

k1,2 = �i��2Dp − Dm

DpDm
±
1 + �i��2Dm − Dp

DmDp
�2	 .

�A11�

Integration the constants C1, C2, and A is determined by the
boundary conditions �A8�, which in the present case are

�1�1 −
1 − k1

2�2�1
2�C1 cosh��1d/2�

+ �2�1 −
1 − k2

2�2�2
2�C2 cosh��2d/2� +

A

2
= 0,

�1�k1 +
1 − k1

2�2�1
2�C1 cosh��1d/2�

+ �2�k2 +
1 − k2

2�2�2
2�C2 cosh��2d/2� −

A

2
= 0,

−
1

2�2�1 − k1

�1
2 C1 sinh��1d/2� +

1 − k2

�2
2 C2 sinh��2d/2�	

+ A
d

2
=

u0

2
. �A12�

A simple calculation gives

C1 =
�1

2�2
3�1 + k2��2B2

D
u0, C2 = −

�1
3�2

2�1 + k1��2B1

D
u0

�A13�

and

A =
�1�2�− �2

2�− 1 + k1��1 + k2� + �1
2��1 + k1��− 1 + k2� + 2�2

2�k1 − k2��2�B1B2

D
u0, �A14�

where

D = �2
3�− 1 + k1��1 + k2�B2S1 + �1B1„�2d�− �2

2�− 1 + k1��1 + k2� + �1
2��1 + k1��− 1 + k2� + 2�2

2�2�k1 − k2��B2 − �1
2�1 + k1��− 1

+ k2�S2… , �A15�

B1=cosh��1d /2�, B2=cosh��2d /2�, S1=sinh��1d /2�, and S2=sinh��2d /2�.
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